Okna-zdes48.ru

Лучшие окна здесь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Неразрушающий метод определения прочности кирпича

Неразрушающие методы контроля прочности бетона

Для увеличения продолжительности срока службы бетонных конструкций требуется периодическая проверка состояния материала. Основной способ, позволяющий определить степень их надежности – неразрушающий контроль бетона, при котором выявляется прочность, однородность, толщина защитного слоя и иные показатели.

Неразрушающий контроль бетона – определение и методы

Неразрушающим контролем называется выявление характеристик и свойств объектов, изготовленных из бетона, при которых их пригодность к эксплуатации не нарушается. Контроль качества может проводиться как непосредственно на стройплощадке, так и в лабораториях.

Существует множество способов определения свойств, не нарушающих пригодности конструкций, каждый из которых имеет свои достоинства, поэтому выделить и рекомендовать проведение определенного метода невозможно.

Самые простые способы – линейные измерения, проверяющие соответствие элементов сооружения на горизонтальные и вертикальные отклонения. Такие измерения делаются:

  • линейками;
  • рулетками;
  • нивелирами;
  • щупами;
  • теодолитами;
  • штангенциркулями.

Кроме этого существуют более сложные неразрушающие методы контроля прочностных характеристик:

  1. локальные разрушения – отрыв со скалыванием, скалывание ребра и отрыв стальных дисков;
  2. ударное воздействие – упругий отскок, придание ударного импульса, пластическая деформация;
  3. ультразвуковое тестирование.

Точность контрольных измерений зависит от следующих факторов:

  • состав и марка цементной смеси;
  • условия отвердения и схватывания;
  • состав заполнителя;
  • возраст бетона;
  • карбонизация материала – изменения, которым подвергается поверхностный бетонный слой при взаимодействии с углекислым газом;
  • температура и влажность исследуемой поверхности.

Прямые методы контроля

Методы местных разрушений, кроме получения конкретных данных, формируют и корректируют градуировочные зависимости, на которых в дальнейшем строятся косвенные способы контроля, которые будут проводиться на тех же самых участках. Локальные способы применяются как на стадии возведения объектов, так и в процессе их эксплуатации или перед реконструкцией. Эти способы считаются самыми точными среди всех неразрушающих методов, потому что используют простую градуировочную зависимость, учитывающую следующие параметры:

  • разновидность (легкий или тяжелый тип) бетона;
  • крупность заполнителя.

Oтpыв co скaлывaниeм

Операция выполняется в соответствии с правилами, обговоренными в государственных стандартах, и определяет сопротивление бетона в момент отрыва его фрагмента от основания при помощи одного из анкерных устройств:

  • рабочего стержня с анкерной головкой;
  • устройства с разжимным полым конусом и стрежнем, фиксирующим положение приспособления;
  • прибора с рифлеными разжимными щеками и разжимным корпусом.

При выборе приспособления и глубины погружения анкера учитывается размер заполнителя и предполагаемая прочность исследуемого состава. При контроле бетона монолитных конструкций, процедура проводится одновременно на трех участках – в результате проводится исследование трех тестов.

Результаты исследования получаются точными, но сама процедура контроля достаточно трудоемка. Кроме того, отрыв со скалыванием нельзя провести на участках с густым армированием и конструкциях, имеющих тонкие стенки.

Метод скалывания ребра

Заключается в скалывании выступающего бетонного угла, не требует предварительных работ и сверления поверхности. Используется при контроле прочности линейных бетонных сегментов: свай, колонн, ригелей, опорных балок. Однако может использоваться только на конструкциях, толщина защитного слоя которых не меньше 20мм.

Метод отрыва стальных дисков

Для выполнения металлические диски приклеиваются на исследуемую поверхность и отрываются от нее через достаточно длительное время (5-24 часа). При отрыве диска от бетона измеряется напряжение, возникающее при подобном разрушении поверхности.

Данный способ не нашел широкого распространения в России из-за ограниченного температурного режима. Еще один недостаток метода – требуется создание борозды, что понижает производительность исследований. Обычно используется в случаях, когда два предыдущих исследования невозможны.

У всех прямых методов контроля имеются общие недостатки:

  • поверхность частично разрушается;
  • процесс достаточно трудоемкий и длительный;
  • до начала работ требуется определить количество арматуры и глубину ее нахождения.

Косвенные методы контроля

Такие способы проводятся для оценки прочностных характеристик как одного из факторов, определяющих общее состояние сооружения. Но полученные результаты должны использоваться только после определения частной градуировочной зависимости.

Метод упругого отскока

Представляет собой измерение расстояние, на которое отскакивает специальный боек от бетонной поверхности или от стальной пластины, закрепленной на ней. Для проведения испытаний используются достаточно сложные приборы системы КИСИ. Применяются специальные болты, обеспечивающие плотное прилегание стальной пластины, автоматически взведенный маятник, совершающий удар под воздействием пружины и шкала, с помощью которой фиксируется расстояние отскока. Кроме контроля прочности при этом измеряется твердость бетона, для чего прибор оснащается склерометром. Способ упругого отскока позволяет установить зависимость между упругостью и прочностью на сжатие.

Читайте так же:
Самодельные гантели с кирпича

Методы ударного импульса и пластической деформации

Метод ударного импульса — самый востребованный и распространенный метод контроля. Фиксирует энергию удара, возникающую при соприкосновении ударного бойка и бетонной поверхности. Такой способ позволяет измерить прочность бетона, установить его класс, упругость по отношению к различным углам наклона воздействия удара.

При этом выявляются зоны, в которых материал имеет неоднородную структуру и недостаточное уплотнение. Показатели вычисляются в результате нескольких замеров. Приборы, используемые для проведения контроля ударным импульсом, имеют компактные размеры, но довольно дороги.

Контроль методом пластической деформации проводится исследованием отпечатка, оставленного на бетоне стальным шариком или стержнем. Приборы, применяемые при контроле, основаны на действии пружины, молотка или маятника. Способ считается устаревшим, но из-за невысокой цены приборов, повсеместно используется.

Ультразвуковой метод

Способ основывается на измерении скорости прохождения через измеряемую конструкцию ультразвуковых волн. Исследования проводятся либо сквозным ультразвуковым прозвучиванием (с установкой датчиков с обратной стороны образца) или поверхностным прозвучиванием (датчики устанавливаются с одной стороны). Ультразвуковой метод контроля позволяет проверять ультразвуком прочность бетона на всем объеме конструкции. Кроме прочности могут измеряться:

  • размеры и глубина трещин;
  • наличие дефектов;
  • общее качество бетонирования.

В процессе производится сквозное или поверхностное прозвучивание. Зависимость между прочностью материала и скоростью прохождения ультразвуковых волн зависит от нескольких факторов, которые необходимо учитывать при проведении измерений:

  • зернистость и состава заполнителя;
  • уплотненность бетона;
  • метода, используемый при подготовке бетонной смеси;
  • колебание расхода цемента;
  • напряженность бетона.

Этот способ доступен для многократного измерения состояния бетонных конструкций любой формы. Это позволяет проводить постоянное контролирование показателей прочности.

К недостаткам метода относятся погрешности, которые могут возникнуть при переводе акустических показателей в прочностные и невозможность исследования высокопрочных бетонов. Нормы ГОСТ и СНиП определяют возможность измерения ультразвуком марок В7,5-В35.

Кроме вышеописанных методов, которые предназначены, прежде всего, для измерения прочности бетона, существуют методы и приборы, исследующие:

  • защитный слой;
  • влажность материала;
  • твердость и другие показатели.

Каждый из приборов и методов предназначен для выполнения определенной функции. В целом получается реальная картина, определяющая качество бетонной конструкции, ее прочность и возможность надежной эксплуатации или необходимость проведения реставрационных работ.

4,4. Определение прочности материалов конструкций неразрушающими методами

Неразрушающие методы являются наиболее приемлемыми для определения прочностных, деформативных и других физико-механических характеристик строительных материалов в условиях, когда эти свойства устанавливаются для конструкций возведенных и эксплуатирующихся зданий и сооружений. Места отбора образцов (проб) для лабораторных испытаний и места для проведения испытаний неразрушающими методами следует устанавливать на характерных участках конструкций с учетом действующих нагрузок и воздействий, напряженно-деформированного состояния обследуемых элементов, конструктивных решений. Эти места могут быть определены также по группам однотипных конструктивных элементов с целью получения совокупности данных для статистической обработки.

Следует обратить внимание на обеспечение несущей способности и пригодности к эксплуатации конструкций, ослабленных отбором образцов (проб).

Неразрушающие методы применяют для установления прочности бетона на сжатие (имеется в виду кубиковая прочность бетона R), которая определяется как функцияR=f(xi) какой-нибудь механической или физической характеристики бетона, полученной опытным путем. Различают механические методы, когда по результатам измерения приборами механических характеристик бетонахi по таблицам и графикам определяют значениеR, и физические методы, пользуясь которыми кубиковая прочность находится как функция физических характеристик, полученных также опытным путем.

Градуировочные таблицы и графики для конкретных конструкций уточняются по результатам испытаний бетонных образцов (кубов со стороной 7,07 см), вырезанных из тела конструкций (не менее трех образцов), или испытаний методом отрыва со скалыванием по ГОСТ 21293—75, описанным ниже.

В процессе обследований при установлении данных о прочности бетона в одной конструкции или среди разных конструкций рекомендуется выделить участки с общими прочностными характеристиками бетона исходя из того, что коэффициент вариации прочности бетона для каждой совокупности должен бытьVR≥0,135, а прочность бетона находиться в пределахR=(0,7. 1,3)R, гдеR — среднее значение прочности. Отдельные места конструкций или отдельные конструкции, имеющие значительные дефекты, в указанную выборку не включаются.

Читайте так же:
Как помочь завалить первого кирпича

Основные методы испытания, используемые для определения прочности бетона непосредственно в конструкциях эксплуатирующихся зданий и сооружений, приведены в табл. 3.1.

Из механических методов одним из наиболее распространенных является метод пластической деформации, основанный на взаимосвязи между Rи размерами отпечатков на бетонной поверхности, которые получают путем вдавливания штампа при статической или динамической нагрузке. Отпечаток на бетонной поверхности (его геометрические размеры) характеризует пластическую (или упругопластическую) деформацию бетона при статической нагрузке под действием прессов, при динамической — под действием удара.

Метод испытания на отрыв со скалыванием основан на определенииR по усилиюР, требуемому для отрыва и скалывания куска бетона из тела конструкции, для чего в бетоне в высверленные отверстия устанавливают с зачеканкой цементным раствором анкерные устройства, которые затем вырывают специальными приборами. Возможно установитьR по прочности бетона на отрыв, когда с помощью аналогичных приборов производят отрыв стального диска, приклеенного к поверхности бетонного элемента эпоксидным клеем. Прочность бетона можно определить и на основании измерения усилия скалывания части бетона в ребре конструкции. Кроме того, для испытания прочности ячеистых бетонов используют метод, заключающийся в выдергивании винтовых стержней, предварительно вкрученных в тело бетона.

Методом, основанным на измерении отскока подпружиненных молотков (склерометров) от бетонной поверхности, характеризуют прочность бетона по величине отскока при ударе о бетон.

Из физических методов определения прочности бетона в конструкции получили распространение импульсные и радиоизотопные.

Из импульсных методов широко применяют ультразвуковые, основанные на измерении времени распространения ультразвука в бетоне и базы прозвучивания, по которым рассчитывают скорость ультразвуковой волны и как ее функцию определяют прочность бетонаR.

Метод волны удара основан на измерении скорости распространения в бетоне продольных волн νуд, вызванных механическим ударом ручным или электрическим молотком. Далее по зависимостиR— νуд устанавливают прочность бетона.

Радиоизотопный метод позволяет определить плотность бетона рνи по заранее установленным зависимостямR— рνвыявить прочность ячеистых бетонов. Он основан на использовании γ-лучей, источником которых являются радиоактивные изотопы.

Часто при обследовании бетонных и железобетонных конструкций определение прочности бетона неразрушающими методами приходится производить при отсутствии зависимости «косвенная характеристика—прочность» для обследуемого бетона конкретной конструкции. Для уменьшения ошибки при определении R рекомендуется проводить комплексные испытания бетона, включающие определение прочности бетона разрушающими методами в образцах, полученных из тела обследуемой конструкции путем выпиливания образцов правильной формы (кубов цилиндров) по ГОСТ 10180—78 и кернов или образцов неправильной формы, методами штампа пли раскалывания и параллельно установление прочности бетона несколькими неразрушающими методами.

По полученным результатам находят наиболее достоверное значение величины R. При этом желательно сочетать как механические, так и физические методы определения прочности бетона.

Для установления деформативных характеристик бетона в эксплуатируемой конструкции может быть использован метод испытания бетона путем скалывания: Специальное устройство, принцип работы которого близок к работе прибора ГПНС-4, позволяет получить значение абсолютной деформации бетона при ступенчатой нагрузке, приложенной к вырываемому из бетона анкеру. По этим данным строят зависимости «деформация — напряжение» или «деформация — относительное напряжение» и вычисляют модуль деформации бетона.

Общие рекомендации по выбору методов испытаний в зависимости от области применения приведены в табл. 4.4, а по выбору типа прибора в зависимости от прочности бетона в табл. 4.5.

Следует отметить, что из всех рассмотренных физико-механических способов определения прочности бетона в конструкциях наиболее достоверные данные получают при испытаниях на отрыв и скалывание. Поэтому этот метод желательно применять параллельно с другими для контроля и уточнения результатов испытаний.

Таблица 4.4. Рекомендации по выбору методов испытаний

Сегодня:

Вы можете

Список разделов / ГОСТы / Бетон, ЖБИ, кирпич, стеновые материалы / ГОСТ 24332-88. Кирпич и камни силикатные. Ультразвуковой метод определения прочности при сжатии

УДК 666.965.2.001.4:006.354 Группа Ж19

Читайте так же:
Технические характеристики кирпича 120

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КИРПИЧ И КАМНИ СИЛИКАТНЫЕ

Ультразвуковой метод определения прочности

silica bricks and stones. ultrasonic method

of compressive strength determination

Внесена Поправка (ИУС № 1 1990 г.)

ОКП 57 4120; 57 4124

Дата введения 01.07.89

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на рядовые и лицевые кирпич и камни силикатные, изготовленные способом прессования (далее —изделия), и устанавливает ультразвуковой импульсный метод (далее — ультразвуковой метод) определения предела прочности при сжатии (далее — прочности) этих изделий.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Ультразвуковой метод применяют для определения проч­ности изделий при их приемке техническим контролем предприя­тия-изготовителя, а также при контрольной проверке качества изделий государственными и ведомственными инспекциями по ка­честву или потребителем.

1.2. Ультразвуковой метод основан на связи между временем распространения ультразвуковых колебаний в изделии и его проч­ностью.

1.3. Ультразвуковые измерения в изделиях проводят способом сквозного соосного прозвучивания согласно черт. 1 и 2.

1.4. Прочность изделий определяют по экспериментально уста­новленным градуировочным зависимостям первого и (или) второ­го типа.

Градуировочную зависимость первого типа устанавливают по результатам ультразвуковых измерений горячих образцов не­посредственно после автоклавирования и механических испыта­ний тех же образцов после их остывания не менее чем через 24 ч.

Градуировочную зависимость второго типа устанавливают по результатам ультразвуковых измерений остывших образцов не менее чем через 24 ч после автоклавирования и механических ис­пытаний тех же образцов.

Градуировочную зависимость первого типа устанавливают для определения прочности изделий в производственных условиях. Градуировочную зависимость второго типа устанавливают для экспертного определения прочности, а также для определения прочности изделий на стройке или в других случаях.

1.5. Прочность изделий, определенная по градуировочной зави­симости первого типа, соответствует прочности тех же изделий, определенной по градуировочной зависимости второго типа.

Схемы расположения преобразователей

Камень (кирпич) пустотелый

2. АППАРАТУРА И МАТЕРИАЛЫ

2.1. Ультразвуковые измерения проводят при помощи прибо­ров, предназначенных для измерения времени распространения ультразвука в кирпиче, камнях и бетоне, аттестованных по ГОСТ 8.383—86.

2.2. Предел допускаемой абсолютной погрешности измерения ( d ) времени распространения ультразвука на стандартных образ­цах, входящих в комплект прибора, не должен превышать зна­чения

(1)

где t — время распространения ультразвука, мкс.

2.3. Типы ультразвуковых приборов и их технические характе­ристики приведены в приложении 1.

Допускается применение других ультразвуковых приборов, предназначенных для испытания кирпича, камней и бетона, если эти приборы удовлетворяют требованиям пп. 2.1 и 2.2.

2.4. Между поверхностями изделия и рабочими поверхностями ультразвуковых преобразователей должен быть обеспечен надеж­ный акустический контакт, для чего применяют вязкие контакт­ные материалы (солидол по ГОСТ 4366—78, технический вазелин по ГОСТ 5774—76 и др.).

Допускается применение переходных устройств или прокладок, обеспечивающих сухой способ акустического контакта и удовлет­воряющих требованиям пп. 2.1 и 2.2.

2.5. При ультразвуковых измерениях для установления градуи­ровочной зависимости и определения прочности изделия ультра­звуковым методом способ контакта должен быть одинаков.

3. ПОДГОТОВКА И ПРОВЕДЕНИЕ ИСПЫТАНИЯ

3.1. Перед испытанием проводят проверку используемых при­боров в соответствии с документацией по эксплуатации и установ­лению градуировочной зависимости для испытываемых изделий.

3.2. Изделия, предназначенные для испытаний и установления градуировочной зависимости, по размерам и внешнему виду долж­ны соответствовать ГОСТ 379—79 и не должны иметь в зоне кон­такта ультразвуковых преобразователей с поверхностью изделия раковин и воздушных пор глубиной более 3 мм и диаметром бо­лее 6 мм, выступов более 0,5 мм, а также трещин. Поверхность изделия должна быть очищена от пыли.

3.3. Установление градуировочных зависимостей

3.3.1. Для установления градуировочной зависимости отбира­ют не менее чем по 5 изделий одного вида от каждой из 20 или более партий, изготовленных из одного сырья и по одной и той же технологии. При этом изделия нумеруют.

3.3.2. Измерения времени распространения ультразвука в из­делиях проводят спустя 0,5 ч, но не более 1 ч после их выгрузки из автоклава при установлении градуировочной зависимости первого типа и (или) спустя не менее 24 ч после выгрузки изделий из автоклава при установлении зависимости второго типа.

Читайте так же:
Кирпича можно сказать что

3.3.3. За время распространения ультразвука в изделии при­нимают среднее арифметическое значение результатов измерений при трех последовательных установках преобразователей на этом изделии в одних и тех же точках.

3.3.4. Отклонение отдельного результата измерения времени распространения ультразвука в изделии от среднего арифметичес­кого значения для этого изделия не должно превышать 2 %.

Результаты измерения времени распространения ультразвука в изделии, не удовлетворяющие этому условию, исключают, а это изделие заменяют другим изделием того же вида.

3.3.5. Прочность прозвученных изделий определяют по ГОСТ 8462—85 не ранее чем через 24 ч после автоклавной обработки. При этом прочность кирпича определяют на образцах, состоящих из двух половинок одного кирпича.

3.3.6. Результаты измерений по пп. 3.3.3, 3.3.4 вносят в жур­нал по форме, приведенной в приложении 2.

3.3.7. Градуировочную зависимость в первый год применения стандарта устанавливают четыре раза через каждые 3 мес, объе­диняя каждый раз результаты измерений с последующими резуль­татами, используемыми для установления зависимостей:

первый раз — по результатам измерений не менее чем 100 из­делий;

второй раз — по объединенным результатам измерений перво­го раза и измерений второго раза, но не менее 200 изделий в об­щей совокупности;

третий раз — по объединенным результатам предшествующих измерений, но не менее 300 изделий в общей совокупности;

четвертый раз — по объединенным результатам предшествую­щих измерений, но не менее 400 изделий в общей совокупности.

3.3.8. Градуировочную зависимость, построенную по объеди­ненным результатам измерений за год, принимают за итоговую.

3.3.9. Расчет, оценку пригодности и поверку зависимостей, по­строенных по пп. 3.3.8, 3.3.9, проводят в соответствии с приложе­нием 3 или 4.

3.3.10. Примеры расчета, оценки пригодности и поверки зави­симостей приведены в приложении 5.

3.4. Для проведения испытаний отбор изделий проводят по ГОСТ 379—79.

3.5. Схемы установки преобразователей принимают согласно п. 1.3 (черт. 1 и 2).

3.6. Время распространения ультразвука в изделиях определя­ют согласно пп. 3.3.4, 3.3.5.

3.7. Прочность контролируемого изделия находят по градуировочной зависимости в соответствии со средним значением времени распространения ультразвука, определенным для данного изделия, и типом градуировочной зависимости.

Градуировочную зависимость используют на участке между минимальным и максимальным значениями времени распространения ультразвука, полученными при установлении зависимости.

4. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ

4.1. Результаты измерений по пп. 3.3.3 — 3.3.5 наносят в журнал испытаний по форме, приведенной в приложении 6.

4.2. По полученным индивидуальным значениям прочности изделий, отобранных от данной партии, находят их среднее арифметическое и минимальное значения прочности.

Марку прочности изделий в партии назначают в соответствии с ГОСТ 379 — 79.

ПРИЛОЖЕНИЕ 1

Технические характеристики ультразвуковых приборов для определения прочности кирпича и камней

Прочность бетона

Классы бетона по прочности

Основная классификация бетона базируется именно на этой характеристике. Марка М15 отличается самой низкой прочностью, М800 наоборот самой высокой. Такая система дает возможность заранее спрогнозировать поведение той или иной марки, и выбрать материал, который будет полностью соответствовать расчетным нагрузкам.

Например, легкие ограждения и теплоизоляционные перегородки могут выполняться из марок М15-М50, М100-150 оптимальны для укладки монолитных оснований, а для ответственных ЖБ сооружений используют бетон не ниже М300.

Сегодня широко применяется также классификация бетона по прочности на сжатие В1 – В22. Различаются эти системы тем, что марки бетона рассчитываются по среднему, а классы по гарантированному фактическому значению прочности. Разрабатывая инженерно-проектную документацию, специалисты, как правило, оперируют понятием классов В. Среди строителей и в быту более понятной и привычной считается система марок.

Легко разобраться в соотношениях марок и классов можно, воспользовавшись следующей таблицой «Соотношение прочности бетона, соответствующих марок и классов по прочности на сжатие»:

Соотношение прочности бетона, соответствующих марок и классов бетона по прочности на сжатие

Марка бетона по прочности на сжатиеКласс бетона по прочности на сжатиеУсловия марка бетона*, соответствующая классу бетона по прочности на сжатие
Бетон всех видов, кроме ячеистогоОтличия от марки бетона (в %)Ячеситый бетонОтличие от марки бетона (в %)
М 15В 114,47-3,5
М 25В 1,521,7-13,2
М 25В 228,9415,7
М 35В 2,532,74-6,536,173,3
М 50В 3,545,84-8,150,641,3
М 75В 565,48-12,772,34-3,5
М 100В 7,598,23-1,8108,518,5
М 150В 10130,97-12,772,34-3,55
М 150В 12,5163,719,1180,85
М 200В 15196,45-1,8217,02
М 250В 20261,934,8
М 300В 22,5294,68-1,8
М 300В 25327,429,1
М 350В 25327,42-6,45
М 350В 27,5360,182,9
М 400В 30392,9-1,8
М 450В 35459,391,9
М 500В 40523,874,8
М 600В 45589,351,8
М 700В 50654,84-6,45
М 700В 55720,322,9
М 800В 60785,81-1,8
*Условная марка бетона — среднее значение прочности бетона серии образцов (кгс/см 2 ), приведенной к прочности образца базового размера куба с ребром 15 см, при номинальном значении коэффицента вариации прочности бетона.
Читайте так же:
Асаны с кирпичами для йоги

От чего зависит прочность бетона

При выполнении любых строительно-монтажных работ очень важно соблюдать все условия, влияющие на прочность бетона в будущем сооружении. Основные факторы, задающие прочностные характеристики бетону:

  • Качество цемента. Из более прочного, быстро твердеющего и качественного цемента получается бетон с аналогичными показателями;
  • Объем цемента. Его количество на один кубометр должно быть таким, чтобы не оставалось пустот в песке, щебне или другом заполнителе. Образованию пустот способствует также и избыточное количество жидкости, которая при засыхании испаряется и понижает прочность бетона;
  • Заполнитель. От того, насколько качественный наполнитель напрямую зависит прочность готового материала. Однородность, чистота и правильная геометрическая форма гранул значительно упрочняют бетон;
  • Замешивание. Чем дольше и интенсивней замешивание, тем прочнее будет конечный результат;
  • Соблюдение правил и норм укладки смеси. Работая с цементным раствором, важно четко придерживаться технологии его нанесения. Использование специальных профессиональных вибраторов способно на 20-30% увеличить прочность бетона.

Методика определения прочности бетона

При промышленном производстве бетона или ЖБИ проводятся лабораторные исследования, выясняющие точную прочность бетона. Методы определения прочности регламентируются ГОСТами и СНиПами. Различают методы разрушающего и неразрушающего контроля. Первые считаются более точными, но их далеко не всегда можно применить на практике.

Связано это с тем, что разрушающие испытания требуют наличия анализируемого образца, извлечь который без нарушения целостности конструкции не представляется возможным. Поэтому чаще используют неразрушающие способы, основывающиеся на анализе показаний измерительных приборов.

Основные методы неразрушающего контроля

  • Анализ пластической деформации. Стальной шарик ударяется с поверхностью, оставляя на ней отпечаток. На измерении его размеров основывается вычисление прочности. Способ считается самым старым, дешевым и одновременно популярным. Зачастую испытания ведутся с помощью специального инструмента – молотка Кашкарова;
  • Определение упругого отскока. Определяется при помощи склерометра. При ударе рабочего тела по поверхности измеряется величина возвратного отскока;
  • Энергия удара. Это самый распространенный импульсный метод, использующийся в приборах, выпускаемых отечественными производителями;
  • Отрыв со сколом. Определяется уровень усилия, которое нужно приложить для отрыва анкера из куска бетона. Полученные показатели вписываются в паспорт на бетон.

Для готовых конструкций, которые эксплуатировались в определенный промежуток времени, используют ультразвуковой контроль прочности. Принцип измерения основан на определении скорости распространения ультразвуковой волны сквозь материал. Для этого с двух противоположных сторон устанавливают специальные преобразователи, передающие акустический контакт.

По существующим отечественным нормативам организации, изготавливающие бетон, должны использовать разрушающий контроль для проверки каждой партии на прочность. Застывший образец устанавливается под пресс и постепенно разрушается. Полученный показатель измеряется в кгс/см 2 и определяет основную марку материала.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector